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Formulation of the problem Three-diagonal Toda system

Classical non-periodic Toda system (Toda chain) consists of n particles on
the line with exponential interactions between neighbours. The Hamiltonian
of this system is given by

H =
n
∑

i=1

1
2

p2
i +

n−1
∑

i=1

exp(qi − qi+1), (1)

where pi is the impulse of the ith particle and qi is its coordinate. The
Poisson structure on the phase space (pi, qi) has the standard form

{pi, qj} = δij, {pi, pj} = 0, {qi, qj} = 0. (2)

The evolution of the system is given by the usual Hamiltonian equations:

ṗi = {H, qi}, q̇i = −{H, pi}.
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Formulation of the problem Three-diagonal Toda system

If we make the following ansatz

bi = pi, ai = exp
1
2

(qi − qi+1), (3)

the Hamiltonian will take the form

H =
n
∑

i=1

1
2

b2
i +

n−1
∑

i=1

a2
i . (4)

Observe, that there are only n − 1 variables ai. The Poisson structure (2)
turns into

{bi, ai−1} = −ai−1, {bi, ai} = ai. (5)

All the other brackets of coordinates ai and bj are equal to zero.

G. Sharygin (MSU, ITEP) Bruhat order and Toda system Dubna 2012 3 / 21



Formulation of the problem Three-diagonal Toda system

In these coordinates it is easy to find the Lax representation: the Hamilton
equations are equivalent to the following equation

L̇ = [L,A] (6)

Here

L =































b1 a1 0 ... 0
a1 b2 a2 ... 0
... ... ... ... ...

0 0 ... an−1 bn































, A =































0 −a1 0 ... 0
a1 0 −a23 ... 0
... ... ... ... ...

0 0 ... an−1 0































(7)

So this system is integrable: the commuting integrals can be taken in the
form Tr(Lk), k = 1, . . . , n. In fact, Tr(L) is a Kasimir function, so one can set
its value equal to 0. The eigenvalues λi of L do not change with time, but
their order does. It was shown by Moser, that when λi , λj, t → −∞, the
matrix L converges to diagonal matrix in which the order of λi is increasing,
and when t → +∞, we obtain diagonal matrix with decreasing λi.
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Formulation of the problem The full symmetric Toda system

Full symmetric Toda system is a straightforward generalization of the three-
diagonal Toda system. It is the system of differential equations on the space
of traceless symmetric matrices Symmn, given by the following Lax equation

L̇ = [L,A], (8)

where L is the varying matrix and A = A(L) its anti-symmetrisation, i.e.

L =































a11 a12 ... a1n

a12 a22 ... a2n

. . . . . . . . . . . .

a1n a2n ... ann































, A =































0 a12 ... a1n

−a12 0 ... a2n

. . . . . . . . . . . .

−a1n −a2n ... 0































.
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Formulation of the problem The full symmetric Toda system

As a matter of fact, this system is Hamiltonian and integrable. The Hamil-
tomnian structure is induced from the isomorphisms:

sln = son ⊕ b
+

n , sl
∗
n = (b+n )∗ ⊕ (son)∗,

(b+n )∗ � (son)⊥ = Symmn, (son)∗ � (b+n )⊥ = n+n ,

given by the Killing form. Thus, we can use the isomorphism Symmn �

(b+n )∗ (where b+n denotes the Borel algebra of upper-triangular matrices) to
pull the Poisson structure to Symmn. The Hamiltonian function is given by
H(L) = Tr(L2).
One can show that this system is again integrable. However, this time the
standard set of first integrals Hi(L) = Tr(Li), i = 1, . . . , n does not suffice,
since dimension of the space is n(n+1)

2 −1, much more than n, so one has to
look for additional integrals of the motion. This will be the subject of the talk
by Yu. Chernyakov. I here will need the following few properties, pertaining
to the integrability.
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Formulation of the problem The full symmetric Toda system

The question, that we address in this talk is:

Describe the asymptotic behaviour of the full symmetric Toda system, i.e.
let t → ±∞, is it true, that the matrix L converges to a diagonal matrix?
If yes, what is the order of eigenvalues of these matrices? In what case
two matrices with different ordering of the eigenvalues are connected by a
trajectory? How many different trajectories there exist?

This questions have been addressed in the paper

P.Fre, A.Sorin, The arrow of time and the Weyl group: all supergravity bil-
liards are integrable, arXiv:0710.1059

in the case n = 3. They used explicit formulas for the solutions of the Toda
system to this end.
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Formulation of the problem The main result

The main theorem is

Theorem

Let all the eigenvalues λi of L be different. Then the matrix L converges to
a diagonal matrix with diagonal entries, equal to λi when t → ±∞. The
order of the eigenvalues is arbitrary. If we fix the indices of λi so that
λi < λi+1 for all i = 1, . . . , n − 1, then all the asymptotic matrices can be
identified with the elements of the permutation group Sn. Then any two
diagonal matrices are connected by a trajectory if and only if the
corresponding permutations are comparable in Bruhat order on Sn.
Moreover, the dimension of the manifold, spanned by the trajectories,
connecting w and w′ is equal to |l(w) − l(w′)| + 1.

Below we shall explain the definition of Bruhat order and other technical
matters.
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Preliminary results Orthogonalisation and flag spaces

We begin with the following observation: for every symmetric matrix L there
exist a special orthogonal matrix Ψ, such, that

L = ΨΛΨ−1, where Λ = diag(λ1, . . . , λn).

The matrix Ψ is not unique, but if λi , λj, i , j, it is determined up to a finite
set of diagonal matrices with entries, equal to ±1. Thus, we can assume,
that this matrix Ψ is locally unique. Then the equation (8) can be rewritten
in the terms of Ψ:

dΨ
dt
= −AΨ, (9)

where we put A = A(Ψ) to be the composition of A(L) with the expression
L = ΨΛΨ−1:

A(Ψ) = (ΨΛΨ−1)+ − (ΨΛΨ−1)−. (10)
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Preliminary results Orthogonalisation and flag spaces

Thus assuming that λi , λj (which we shall always do below) we can speak
about the evolution of L in the terms of the evolution of the matrix Ψ in
SOn(R), given by the equation (9).
More accurately, let Tn be the group of diagonal matrices with ±1 on diag-
onal and determinant equal to 1. Then Ψ can be regarded as the point in
SOn(R)/Tn, which is isomorphic to the flag manifold Fln(R). Recall, that a
(full) flag E· in Rn is a collection of hyperplanes

{0} = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = R
n

in Rn, such that dimEi = i.
Thus, the Toda system can be regarded as a system on the flag space. In
what follows we shall stick to this point of view. From now on we shall fix
the set of eigenvalues λi , λj, i , j.
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Preliminary results Orthogonalisation and flag spaces

It is convenient to describe the integrals of the Toda system in the terms
of the system on Fln(R) that we have just constructed. In effect, this is the
approach, used by Yu. Chernyakov and A. Sorin. In fact, the additional inte-
grals can be chosen to be equal to the rational functions of minors M i1...ik

1...k
of

matrix Ψ (here we use this notation for the determinants of the submatrices
of Ψ, spanned by the intersections of first (or last) k rows and by arbitrary k
columns of Ψ). The equations of motion of these minors have the following
form

Ṁ = f (λ, ψ)M, (11)

where f is some regular function of λ and ψ.
The level set M = 0 of M is an invariant subvariety of the Toda system. We
shall call these surfaces the minor surfaces of the Toda flow. For instance
in the case n = 3 there are six such surfaces, which correspond to six 1× 1
submatrices and when n = 4 there are eight distinct 1 × 1 minors and six
2× 2 minors, which give invariant surfaces.
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Preliminary results Morse theory

Recall, that Morse function on a compact smooth manifold M is a smooth
function, with a discrete set of nondegenerate singular ponts, i.e. points x0,
in which df (x0) = 0 and the Hessian matrix d2f (x0) is nondegenerate. One
can regard the Hessian d2f (x0) as a quadratic form on Tx0M; then the index
of this quadratic form (the number of −1s in its canonic form) is called the
index of the singular point x0 of f . It is also usually assumed, that the values
of f in its singular points are different.
Let f be a Morse function; for any Riemannian structure g on M, we can
define the gradient gradf as the vector field equal to df with raised indices.
One readily sees, that this vector field has the same set of singular points
as f . One can prove the Morse Lemma: for every singular point x0 of in-
dex k there exists an orthogonal in x0 coordinate system ξ1, . . . , ξ n in a
neighbourhood of x0, s.t.

f = f (x0) − (ξ1)2 − · · · − (ξ k)2
+ (ξ k+1)2

+ · · · + (ξ n)2.
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Preliminary results Morse theory

One can use these coordinates to describe the behaviour of the trajectories
of the gradient vector field. First, there can be no closed trajectories (since
the value of f grows along any trajectory); so any trajectory should connect
two singular points of the function. Second, in the neighbourhood of a
singular point x0, we have a k-dimensional submanifold, spanned by the
trajectories, incoming to x0; this manifold is called unstable submanifold of
the point x0 denoted Wu

x0
(f ), and a dimension n − k submanifold, spanned

by the trajectories, exiting from x0, the stable submanifold of the point x0

denoted Ws
x0

(f ).
Clearly, two singular points x0 and x1 are connected by a trajectory, iff, say
f (x1) > f (x0) and Wu

x1
(f ) ∪ Ws

x0
(f ) , ∅, and there are as many trajectories

as many points are in this intersection. In general it is not easy to describe
this intersection. An important particular case is the case of Morse-Smale
system: the pair (f , g) is said to be a Morse-Smale, if all the stable and
unstable submanifolds intersect transversally. In this case the dimension is
given by the usual dimension counting

dimU ∪ V = dimU + dimV − dimM.
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Preliminary results Morse theory

The important property of the Toda system on SOn(R) is that it is a gradient
system of a Morse function, i.e. there is a Morse function Fn(Ψ), Ψ ∈
SOn(R), such that its gradient, with respect to certain Riemannian structure
on SOn(R), is equal to −A(Ψ)Ψ. In fact the matrix A can be written in the
form

A = J([L,N]),

where N is a diagonal matrix, and J – a symmetric linear operator on the
space of antisymmetric matrices son, equal to the division by k on the k-th
upper- and lower-diagonals of a matrix. The operator J is also used in the
definition of the Riemannian structure: one puts

〈A, B〉J = 〈A, J(B)〉 = −Tr(AJ(B)),

where A, B ∈ son are arbitrary antisymmetric matrices.
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Preliminary results SO3(R) case

This is is enough to describe the asymptotic be-
haviour in the low dimensions. First, we notice
that A(Ψ) = 0 iff the matrix Ψ is (up to the diag-
onal group Tn) a matrix of permutation. Thus,
the first statement of the theorem is proved.
For n = 3, we have 6 two-dimensional minor
surfaces, which intersect over one-dimensional
curves. The trajectories flow in the direction in
which the values of F3 grow. Calculating the
signs of the Hessians on the surfaces, we obtain
the diagramm, drawn here: thin arrows corre-
spond to single trajectories, blue arrows to one-

parametric families and the red arrow to a two-parametric family of trajec-
tories. As one can see, this is precisely the Hasse diagramm of the Bruhat
order on S3 (see below). Similar calculations can be performed for SO4(R)
with the same result (see next slide). In order toanswer the question in a
general case, we need more delicate constructions.
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Preliminary results SO3(R) case

The asymptotic flows on SO4(R).
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Proof of the theorem Bruhat order and Schubert cells

Let w be a permutation on the set {1, . . . , n}. One defines the height (or
length) of w, denoted l(w), as the number of inversions in w:

l(w) = #{(i, j) | 1 ≤ i < j ≤ n, w(i) > w(j)}. (12)

One can now introduce a partial order on Sn, the (weak) Bruhat order as
the minimal partial order, generated by the following relations:

x < y, if and only if y = (i, j)x, and l(y) = 1+ l(x). (13)

Given a partial order on a finite set, its Hasse diagramm is the graph, whose
vertices are theelements of the set, and the edges connect two neighbours
w.r.t. the given partial order.
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Proof of the theorem Bruhat order and Schubert cells

For each permutation w, one defines the corresponding Schubert cell in
Fln(R) as:

Definition

Schubert cell Xw ⊂ Fln(R) is the set of the flags verifying the following
conditions:

Xw = {E· ∈ Fln | dim(Ep ∩ Fq) = #{i | 1 ≤ i ≤ p, w(i) ≤ q} ∀ 1 ≤ p, q ≤ n},
(14)

where flag E· = E1 ⊂ E2 ⊂ ... ⊂ En = R
n and dim(Ei) = i, Fq = 〈e1, ..., eq〉 is

the space, spanned by the first q elements of the basis e1, ..., en for Rn.

Schubert variety X̄w is defined as the closure of the corresponding Schubert
cell. One can show that w < w′ in Bruhat order, iff X̄w ⊆ X̄w′ (a classical
result, to be found in many books). besides this for any X̄w, one can find a
set of equations on the elements of SLn(R) (or SOn(R)), that determine X̄w

(or, rather its preimage in the corresponding group).
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Proof of the theorem Bruhat order and Schubert cells

In addition to the Schubert cells Xw, one can define dual Schubert cells Ωw,
as the set of those flags E·, for which for all p, q we have

dim(Ep

⋂

F̃q) = #{i ≤ p | w(i) ≥ n + 1− q},

where F̃q is the subspace, spanned by the last q vectors of the basis. Dual
Schubert variety is defined similarly, and can also be described by equa-
tions. The following three facts about the Schubert cells are taken from
literature:

1 dimXw = l(w), dimΩw =
n(n+1)

2 + 1− l(w);
2 Xw∪Ωu , ∅ iff u < w in Bruhat order, then they intersect transversally;
3 TwXw is spanned by positive roots of SLn(R), mapped into negative by

w; TwΩw is spanned by the positive roots of SLn, mapped into positive
by w.
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Proof of the theorem The last steps

The important steps towards the proof are the following lemmas:

Lemma

Toda flow preserves Schubert cells and dual Schuber cells (in other words,
the corresponding vector field is tangent to Schubert cells).

Lemma

If the order of the eigenvalues in Λ is given by λ1 < λ2 < · · · < λn, then the
negative (resp. positive) eigenspace of the Hessian of the Morse function
Fn of at w is spanned by those positive roots of SLn, which are mapped
into negative (resp. positive) roots by w.

Both lemmas are proved by straightforward calculations: in case of lemma
2 we use the systems of equations, that determine Xw or Ωw and show, that
they are preserved by the flow. In the case of lemma 3 we calculate the
Hessian in the local coordinates, given by the right translation of sln by w.
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Proof of the theorem The last steps

Now the proof follows from the previous observations: we see, that restric-
tion of the gradient flow to a (dual) Schubert cell coincides with the gradient
flow of the restriction of the function on it (lemma 2), hence the cell Xw

(resp. dual cell Ωw) coincides with the unstable (resp., stable) submanifold
of Fn in this point (lemma 3 and the third property of Schubert cells). Thus
(see property 2 of the Schubert cells) we must conclude, that the system
is Morse-Smale and two points are connected by a trajectory, iff the cor-
responding permutations are Bruhat-comparable. Finally, the dimansion of
the space of trajectories, connecting them is given by the formula, men-
tioned in thoerem.
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